Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Res Pediatr Endocrinol ; 16(1): 116-122, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38054413

RESUMEN

Monocarboxylate transporter 8 (MCT8) deficiency is a rare genetic disorder characterized by peripheral thyrotoxicosis and severe cognitive and motor disability due to cerebral hypothyroidism. 3,3',5-triiodothyroacetic acid (Triac) was shown to improve peripheral thyrotoxicosis but data on neurodevelopmental outcome are scarce. We present a case of MCT8 deficiency and the experience with Triac focusing on change in neurodevelopmental and peripheral features. A five-month-old boy was referred because of feeding difficulty, central hypotonia and global developmental delay. Despite six months of physiotherapy, physical developmental milestones did not improve, and distal muscle tone was increased. A hemizygous pathogenic variant in SLC16A2 was found and MCT8 deficiency was confirmed at 19-months. Thyroid stimulating hormone was 2.83 mIU/mL, free thyroxine 6.24 pmol/L (N=12-22) and free triiodothyronine (FT3) 15.65pmol/L (N=3.1-6.8). He had tachycardia, blood pressure and transaminases were elevated. Triac was started at 21-months. Two weeks after treatment, FT3 dramatically decreased, steady normal serum FT3 was achieved at 28-months. Assessment of neurodevelopmental milestones and signs of hyperthyroidism were evaluated at baseline, 6 months and 12 months after treatment. Signs of hyperthyroidism were improved by 6 months. Developmental composite scores of Bayley Scales of Infant Developmental 3rd Edition remained the same but important developmental milestones (head control, recognition of caregiver, response to his name) were attained, regression in the attained milestones were not observed. Initial dose, management protocol for Triac and research into its efficacy on neurodevelopmental signs in MCT8 deficiency are progressing. This case presents evidence that Triac may resolve peripheral thyrotoxicosis successfully and may slow neurodevelopmental regression, while some developmental milestones were achieved after one year of treatment.


Asunto(s)
Personas con Discapacidad , Hipertiroidismo , Discapacidad Intelectual Ligada al Cromosoma X , Trastornos Motores , Simportadores , Tirotoxicosis , Triyodotironina/análogos & derivados , Masculino , Lactante , Humanos , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/tratamiento farmacológico , Hipotonía Muscular/genética , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Atrofia Muscular/diagnóstico , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/uso terapéutico , Simportadores/genética , Simportadores/uso terapéutico
2.
Adv Mater ; 35(46): e2305512, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37487702

RESUMEN

Simultaneous lactate metabolism inhibition and intracellular acidification (LIIA) is a promising approach for inducing tumor regression by depleting ATP. However, given the limited efficacy of individual metabolic modulators, a combination of various modulators is required for highly efficient LIIA. Herein, a co-delivery system that combines lactate transporter inhibitor, glucose oxidase, and O2 -evolving nanoparticles is proposed. As a vehicle, a facile room-temperature synthetic method for large-pore mesoporous silica nanoparticles (L-MSNs) is developed. O2 -evolving nanoparticles are then conjugated onto L-MSNs, followed by immobilizing the lactate transporter inhibitor and glucose oxidase inside the pores of L-MSNs. To load the lactate transporter inhibitor, which is too small to be directly loaded into the large pores, it is encapsulated in albumin by controlling the albumin conformation before being loaded into L-MSNs. Notably, inhibiting lactate efflux shifts the glucose consumption mechanism from lactate metabolism to glucose oxidase reaction, which eliminates glucose and produces acid. This leads to synergistic LIIA and subsequent ATP depletion in cancer cells. Consequently, L-MSN-based co-delivery of modulators for LIIA shows high anticancer efficacy in several mouse tumor models without toxicity in normal tissues. This study provides new insights into co-delivery of small-molecule drugs, proteins, and nanoparticles for synergistic metabolic modulation in tumors.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Glucosa Oxidasa/uso terapéutico , Transportadores de Ácidos Monocarboxílicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Nanopartículas/uso terapéutico , Glucosa , Concentración de Iones de Hidrógeno , Adenosina Trifosfato , Albúminas , Dióxido de Silicio , Porosidad , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/uso terapéutico
3.
Blood Adv ; 7(14): 3485-3500, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36920785

RESUMEN

Multiple myeloma (MM) is a hematological malignancy that emerges from antibody-producing plasma B cells. Proteasome inhibitors, including the US Food and Drug Administration-approved bortezomib (BTZ) and carfilzomib (CFZ), are frequently used for the treatment of patients with MM. Nevertheless, a significant proportion of patients with MM are refractory or develop resistance to this class of inhibitors, which represents a significant challenge in the clinic. Thus, identifying factors that determine the potency of proteasome inhibitors in MM is of paramount importance to bolster their efficacy in the clinic. Using genome-wide CRISPR-based screening, we identified a subunit of the mitochondrial pyruvate carrier (MPC) complex, MPC1, as a common modulator of BTZ response in 2 distinct human MM cell lines in vitro. We noticed that CRISPR-mediated deletion or pharmacological inhibition of the MPC complex enhanced BTZ/CFZ-induced MM cell death with minimal impact on cell cycle progression. In fact, targeting the MPC complex compromised the bioenergetic capacity of MM cells, which is accompanied by reduced proteasomal activity, thereby exacerbating BTZ-induced cytotoxicity in vitro. Importantly, we observed that the RNA expression levels of several regulators of pyruvate metabolism were altered in advanced stages of MM for which they correlated with poor patient prognosis. Collectively, this study highlights the importance of the MPC complex for the survival of MM cells and their responses to proteasome inhibitors. These findings establish mitochondrial pyruvate metabolism as a potential target for the treatment of MM and an unappreciated strategy to increase the efficacy of proteasome inhibitors in the clinic.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Estados Unidos , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Antineoplásicos/uso terapéutico , Transportadores de Ácidos Monocarboxílicos/uso terapéutico , Bortezomib/farmacología , Bortezomib/uso terapéutico , Piruvatos/uso terapéutico
4.
Immunology ; 169(3): 271-291, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36708143

RESUMEN

The nucleotide-binding and oligomerization domain, leucine-rich repeats, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in innate immunity and is involved in the pathogenesis of autoinflammatory diseases. Glycolysis regulates NLRP3 inflammasome activation in macrophages. However, how lactic acid fermentation and pyruvate oxidation controlled by the mitochondrial pyruvate carrier (MPC) affect NLRP3 inflammasome activation and autoinflammatory disease remains elusive. We found that the inactivation of MPC with genetic depletion or pharmacological inhibitors, MSDC-0160 or pioglitazone, increased NLRP3 inflammasome activation and IL-1ß secretion in macrophages. Glycolytic reprogramming induced by MPC inhibition skewed mitochondrial ATP-associated oxygen consumption into cytosolic lactate production, which enhanced NLRP3 inflammasome activation in response to monosodium urate (MSU) crystals. As pioglitazone is an insulin sens MSDC-itizer used for diabetes, its MPC inhibitory effect in diabetic individuals was investigated. The results showed that MPC inhibition exacerbated MSU-induced peritonitis in diabetic mice and increased the risk of gout in patients with diabetes. Altogether, we found that glycolysis controlled by MPC regulated NLRP3 inflammasome activation and gout development. Accordingly, prescriptions for medications targeting MPC should consider the increased risk of NLRP3-related autoinflammatory diseases.


Asunto(s)
Diabetes Mellitus Experimental , Gota , Enfermedades Autoinflamatorias Hereditarias , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transportadores de Ácidos Monocarboxílicos/uso terapéutico , Ácido Úrico , Pioglitazona/uso terapéutico , Gota/patología , Interleucina-1beta/metabolismo
5.
Br J Cancer ; 122(6): 895-903, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31937921

RESUMEN

BACKGROUND: Monocarboxylate transporter 1 (MCT1) is a regulator of cell metabolism and a therapeutic target for cancer treatment. Understanding the changes in tumour function accompanying MCT1 inhibition will better characterise the anti-tumour effects of MCT1 inhibitors, potentially enabling the identification of pharmacodynamic biomarkers for the clinical development of these agents. METHODS: We assessed the impact of the MCT1 inhibitor AZD3965 on tumour metabolism and immune cell infiltration as key determinants of tumour biological function in the MCT1-dependent Raji B cell lymphoma model. RESULTS: Treatment of Raji xenograft-bearing severe combined immunodeficiency mice with AZD3965 led to inhibition of tumour growth paralleled with a decrease in tumour choline, as detected by non-invasive in vivo proton nuclear magnetic resonance spectroscopy. This effect was attributed to inhibition of phosphocholine de novo synthesis following decreased choline kinase α protein and messenger RNA expression that correlated with the AZD3965-induced build-up in intracellular lactate. These changes were concomitant with increased tumour immune cell infiltration involving dendritic and natural killer cells. CONCLUSIONS: Our data provide new insights into the metabolic and cellular changes that occur in the tumour microenvironment following MCT1 blockade, which may contribute to the anti-tumour activity of AZD3965 and could have potential as pharmacodynamic biomarkers of MCT1 inhibition.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/uso terapéutico , Pirimidinonas/uso terapéutico , Tiofenos/uso terapéutico , Animales , Técnicas de Cultivo de Célula , Línea Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Transportadores de Ácidos Monocarboxílicos/farmacología , Pirimidinonas/farmacología , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...